2021 年普通高等学校招生全国统一考试适应模拟 数学参考答案

一、单项选择题:

1——4. BDCD. 5——8. ADBD

- 2. **【解析】**记事件 A: 电视机的显像管开关了10000 次还能继续使用,记事件 B: 电视机的显像管开关了15000 次后还能继续使用,则 P(AB) = 0.6,P(A) = 0.8,所以,已经开关了10000 次的电视机显像管还能继续使用到15000 次的概率为 P(B|A) = $\frac{P(AB)}{P(A)}$ = $\frac{0.6}{0.8}$ = 0.75 .故选: D.
- 3. 【解析】当 a=1 时,直线 l_1 : x+2y-1=0 与直线 l_2 : x+2y+4=0 显然平行;若直线 l_1 与直线 l_2 平行,则有: $\frac{a}{1}=\frac{2}{a+1}\neq -2$,解之得:a=1 . 所以是充分必要条件.
- 4. 【提示】面积法转化. 7. 【提示】图像法转化.
- 8. **【解析】**由图易得点 C 的横坐标为 $\frac{\pi}{3}$,所以 f(x) 的周期 $T=\pi$,所以 $\omega=2$,又 $f\left(-\frac{\pi}{6}\right)=0$,所以 $\varphi=\frac{\pi}{3}$,因此 $f(x)=A\sin\left(2x+\frac{\pi}{3}\right)$. 函数 f(x) 的图象不关于点 $\left(-\frac{\pi}{3},0\right)$ 成中心对称. 若圆半径为 $\frac{5\pi}{12}$,则 $\frac{\sqrt{3}}{2}A=\sqrt{\left(\frac{5\pi}{12}\right)^2-\left(\frac{\pi}{3}\right)^2}$, $\therefore A=\frac{\sqrt{3\pi}}{6}$,函数 f(x) 的解析式为 $f(x)=\frac{\sqrt{3\pi}}{6}\sin(2x+\frac{\pi}{3})$,故选 D.

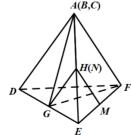
二、多项选择题:

9. AC. 10. BCD. 11. AC. 12. ABCD

故选项 A 正确, 选项 B 错误, 故选: AC.

9. 【答案】AC. 【解析】: K^2 的观测值为 9,且 $P(K^2 \ge 6.635) = 0.010$, $P(K^2 \ge 10.828) = 0.001$,又:9 > 6.635,但 9 < 10.828,:有 99%的把握认为"光盘行动"的认可情况与年龄有关,或者说,在犯错误的概率不超过 0.010 的前提下,认为"光盘行动"的认可情况与年龄有关,所以选项 C 正确,选项 D 错误,由表可知认可"光盘行动"的人数为 60 人,所以在该餐厅用餐的客人中认可"光盘行动"的比例为 $\frac{60}{90} \times 100\% \approx 66.7\%$,A(B,C)

10. 【答案】BCD. 【解析】如图,把平面展开图还原成正四面体,知GH与EF为异面直线,A不正确; BD与MN为异面直线,B正确; GH//AD,MN//AF,而 $\angle DAF = 60^\circ$, $\therefore \angle GHM = 60^\circ$,



 $\therefore GH = MN$ 成 60° 角,C 正确; 连接 AG,FG , $AG \perp DE$, $FG \perp DE$

 $\therefore DE \perp \text{平面 } AFG, \therefore DE \perp AF, \text{又 } MN / / AF$ $\therefore DE \vdash MN$ 垂直,D 正确.故选: BCD 适应模拟•数学参考答案 第 1 页(共 8 页)

11.【答案】AC. 【解析】将方程 $2(x-1)(x-3) = y(e^{x-2} + e^{2-x})$ 整理可得 $y = \frac{2(x-1)(x-3)}{e^{x-2} + e^{2-x}}$, 令 y = f(x)

将 x 换成 4-x 时,即
$$f(4-x) = \frac{2[(4-x)-1][(4-x)-3]}{e^{(4-x)-2}+e^{2-(4-x)}} = \frac{2(x-3)(x-1)}{e^{2-x}+e^{x-2}}$$
,

所以 f(x) = f(4-x) , 所以曲线关于 x = 2 对称, 所以①正确, ②不正确;

当x<0时,f(x)>0,所以该曲线不经过第三象限,故③正确,

曲线过的整点为(1,0), (3,0), (2,-1) 三个整数点,故④不正确,故选: AC.

12. 【答案】 ABCD 【提示】集合元素设为复数的代数形式或者利用复数模的几何意义数形结合.

三、填空题:

13.3
$$\sqrt{2}$$
; 14.155; 15.己卯; 60; 16. $\frac{\sqrt{2}(1+\ln 2)}{2}$

13.【答案】 $3\sqrt{2}$.

【解析】
$$|2\vec{a} - \vec{b}| = \sqrt{10} \Leftrightarrow (2\vec{a} - \vec{b})^2 = 10 \Leftrightarrow 4 + |\vec{b}|^2 - 4|\vec{b}|\cos 45^\circ = 10 \Leftrightarrow |\vec{b}| = 3\sqrt{2}$$

14.【答案】155. 【**提示**】取对数解.

15. 【答案】己卯: 60

【解析】解:根据题意,天干有十,即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,

地支有十二,即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥;

其相配顺序为: 甲子、乙丑、丙寅、...、癸酉,甲戌、乙亥、丙子、...、癸未,甲申、乙酉、丙戌、...、癸巳, ...,若 2049 年是己巳年,则 2059 年是己卯年;天干是以 10 为公差的等差数列,地支是以 12 为公差的等差数列,则天干地支共有 60 种组合,即使用干支纪年法可以得到 60 种不同的干支纪年;故答案为:己卯,60.

16.【答案】
$$\frac{\sqrt{2}(1+\ln 2)}{2}$$
 【提示】数形结合,对称性.

四、解答题:

17. 【解析】

(I)
$$f(x) = \sin\left(2x - \frac{\pi}{6}\right)$$
; 单调递增区间: $\left[k\pi - \frac{\pi}{6}, k\pi + \frac{\pi}{3}\right], (k \in \mathbb{Z})$;

(II) 由余弦定理及重要不等式,得 $A = \frac{\pi}{3}, bc \le 4, (S_{\square ABC})_{\max} = \sqrt{3}.$

适应模拟•数学参考答案 第2页(共8页)

18. 【解析】

$$\overline{y} = \frac{1+11+27+51+80}{5} = 34$$

(I) 没 $x = (t-1)^2$, 则 $x = 6$, $\overline{y} = \frac{1+11+27+51+80}{5} = 34$,
则 $\hat{b} = \frac{0+11+4\times27+9\times51+16\times80-5\times6\times34}{1^4+2^4+3^4+4^4-5\times6^2} = \frac{419}{87} = 4.82$,

所以 $\hat{a} = v - \hat{b}x = 5.08$,故义关于t的回归方程为 $\hat{v} = 4.82(t-1)^2 + 5.08$.

(II) \pm (1) \pm (2) \pm (3) \pm (3) \pm (4) \pm (4) \pm (5) \pm (6) \pm (7) \pm (8) \pm (8) \pm (1) \pm (1)

因为
$$\left|\frac{\varepsilon_0}{y_0}\right| = \frac{|120 - 125.58|}{120} < \frac{6}{120} = 0.05$$
,所以(1)中求得的回归方程可靠.

19. 【解析】

(1) 因为底面 ABCD 为菱形、所以 BD LAC, 又 PA L底面 ABCD, 所以 -----2分 $PC \perp BD$.

设 $AC \cap BD = F$,连结EF. 因为 $AC = 2\sqrt{2}$,

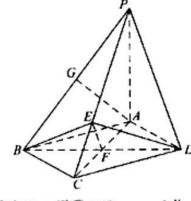
$$PA = 2$$
 , $PE = 2EC$, ∂t

$$PC = 2\sqrt{3}$$
, $EC = \frac{2\sqrt{3}}{3}$. $FC = \sqrt{2}$.

从而
$$\frac{PC}{FC} = \sqrt{6}$$
, $\frac{AC}{EC} = \sqrt{6}$.

因为
$$\frac{PC}{FC} = \frac{AC}{FC}$$
 . $\angle FCE = \angle PCA$,所以

 $\triangle FCE = \triangle PCA$. $\angle FEC = \angle PAC = 90^{\circ}$,



由此知 PC LEF.

PC 与平面 BED 内两条相交直线 BD, EF 都垂直, 所以 PC 上平面 BED. ·····6 分 (II) 在平面 PAB 内过点 A 作 AG L PB, G 为重足.

因为二面角 A-PB-C 为90°, 所以平面 PAB 上平面 PBC.

义平面 $PAB \cap$ 平面 PBC = PB , 故 $AG \perp$ 平面 PBC , $AG \perp BC$.

BC 与平面 PAB 内两条相交直线 PA, AG 都垂直,故 BC 上平面 PAB,于是 BC 1 AB, 所以底面 ABCD 为正方形, AD = 2, $PD = \sqrt{PA^2 + AD^2} = 2\sqrt{2}$8 分 设 D 到平面 PBC 的距离为d.

因为 AD // BC, 且 AD 年面 PBC, BC 二平面 PBC, 故 AD // 平面 PBC, A、D 两点到平面 PBC 的距离相等,即 $d = AG = \sqrt{2}$.

设 PD 与平面 PBC 所成的角为 α ,则 $\sin \alpha = \frac{d}{RD} = \frac{1}{2}$

所以PD与平面PBC所成的角为30°.

-----12分

适应模拟•数学参考答案 第3页(共8页)

解法 2: 设 $AC \cap BD = O$, 以 O 为原点, OC 为 X 轴, OD 为 Y 轴建立空间直角坐标系,则 $A(-\sqrt{2},0,0), C(\sqrt{2},0,0), P(-\sqrt{2},0,2), \mathcal{C}_{V} B(0,-a,0), D(0,a,0), E(x,y,z)$

(I)证明:由PE = 2EC得 $E(\frac{\sqrt{2}}{3}, 0, \frac{2}{3})$ $\overrightarrow{BE} = (\frac{\sqrt{2}}{3}, a, \frac{2}{3}) \quad \overrightarrow{BD} = (0, 2a, 0)$ $\overrightarrow{PC} \cdot \overrightarrow{BE} = (2\sqrt{2}, 0, -2) \cdot (\frac{\sqrt{2}}{3}, a, \frac{2}{3}) = 0$ $\overrightarrow{PC} \cdot \overrightarrow{BD} = (2\sqrt{2}, 0, -2) \cdot (0, 2a, 0) = 0$, $\overrightarrow{BD} \cdot \overrightarrow{PC} \perp \overrightarrow{BE} \cdot \overrightarrow{PC} \perp \overrightarrow{BD}$, $\overrightarrow{BD} \cdot \overrightarrow{BD} \cdot \overrightarrow{BD} \cdot \overrightarrow{BD} = (2\sqrt{2}, 0, -2) \cdot (0, 2a, 0) = 0$, $\overrightarrow{BD} \cdot \overrightarrow{BD} = (2\sqrt{2}, 0, -2) \cdot (0, 2a, 0) = 0$, $\overrightarrow{BD} \cdot \overrightarrow{BD} = (2\sqrt{2}, 0, -2) \cdot (0, 2a, 0) = 0$ (II) 设平面 PAB 的法向量为 $\vec{n}=(x,y,z)$,又 $\overrightarrow{AP}=(0,0,2), \overrightarrow{AB}=(\sqrt{2},-a,0)$,由 $\vec{n} \cdot \overrightarrow{AP} = 0, \vec{n} \cdot \overrightarrow{AB} = 0$ 得 $\vec{n} = (1, \frac{\sqrt{2}}{a}, 0)$, 设平面 PBC 的法向量为 $\vec{m} = (x, y, z)$, 又 $\overrightarrow{BC} = (\sqrt{2}, a, 0), \overrightarrow{CP} = (-2\sqrt{2}, 0, 2) \quad \text{if } \overrightarrow{m} \cdot \overrightarrow{BC} = 0, \overrightarrow{m} \cdot \overrightarrow{CP} = 0 \quad \text{if } \overrightarrow{m} = (1, -\frac{\sqrt{2}}{a}, \sqrt{2}) \quad \text{if } \overrightarrow{F} = \overrightarrow{D}$ 角A-PB-C为90°,所以 $\vec{m}\cdot\vec{n}=0$,解得 $a=\sqrt{2}$ 所以 $\overrightarrow{PD} = (\sqrt{2}, \sqrt{2}, -2)$, 平面 \overrightarrow{PBC} 的法向量为 $\overrightarrow{m} = (1, -1, \sqrt{2})$, 所以 \overrightarrow{PD} 与平面 \overrightarrow{PBC} 所成角的 $\frac{|PD \cdot m|}{\text{正乾值为}|PD| \cdot |m|} = \frac{1}{2}$ 所以 PD 与平面 PBC 所成鱼为 6

【点评】试题变化的地方就是点E的位置的选择是三等分点,这样的垂直问题对于同学们来说是有点难 度的,因此最好使用空间直角坐标系解决该问题为好.

20. 【解析】

(I) **若选①**: 设
$$P(x, y)$$
,根据题意,得 $\frac{\sqrt{(x-\sqrt{3})^2+y^2}}{\left|x-\frac{4\sqrt{3}}{3}\right|} = \frac{\sqrt{3}}{2}$.

整理,得 $\frac{x^2}{4} + y^2 = 1$.所以动点 *P* 的轨迹方程为 $\frac{x^2}{4} + y^2 = 1$.

若选②: 设 P(x, y), S(x', 0), T(0, y'), 则 $\sqrt{(x')^2 + (y')^2} = 3(*)$.

因为
$$\vec{OP} = \frac{2}{3}\vec{OS} + \frac{1}{3}\vec{OT}$$
,所以 $\begin{cases} x = \frac{2}{3}x', \\ y = \frac{1}{2}y'. \end{cases}$ 整理,得 $\begin{cases} x' = \frac{3}{2}x, \\ y' = 3y, \end{cases}$

代入(*)得 $\frac{x^2}{4}$ + y^2 =1.所以动点 P 的轨迹方程为 $\frac{x^2}{4}$ + y^2 =1.

若选③: 设 P(x, y), 直线 l 与圆相切于点 H, 则 $|PA|+|PB|=d_1+d_2=2|OH|=4>2\sqrt{3}=|AB|$. 由椭圆的定义,知点P的轨迹是以A,B为焦点的椭圆.

适应模拟•数学参考答案 第4页(共8页)

所以 2a=4, $2c=|AB|=2\sqrt{3}$,故 a=2, $c=\sqrt{3}$, b=1. 所以动点 P 的轨迹方程为 $\frac{x^2}{4}+y^2=1$.

(II) 法一 设 $Q(0, y_0)$, 当直线 l'的斜率不存在时, $y_0=0$.

当直线 l'的斜率存在时,若斜率为 0,则线段 MN 的垂直平分线与 y 轴重合,不合题意,所以设直线 l' 的方程为 $y=k(x-1)(k\neq 0)$, $M(x_1, y_1)$, $N(x_2, y_2)$.

联立得方程组
$$\begin{cases} y = k \ (x-1) \ , \\ \frac{x^2}{4} + y^2 = 1, \end{cases}$$
 消去 y 并整理,得 $(1 + 4k^2)x^2 - 8k^2x + 4(k^2 - 1) = 0$,

则 $\Delta > 0$ 恒成立,且 $x_1 + x_2 = \frac{8k^2}{1 + 4k^2}$. 设线段 MN 的中点为 $G(x_3, y_3)$,

$$\iiint x_3 = \frac{x_1 + x_2}{2} = \frac{4k^2}{1 + 4k^2}, \ y_3 = k(x_3 - 1) = -\frac{k}{1 + 4k^2}.$$

所以线段 *MN* 的垂直平分线的方程为 $y + \frac{k}{1+4k^2} = -\frac{1}{k} \left(x - \frac{4k^2}{1+4k^2}\right)$,

$$\Rightarrow x=0$$
, $\notin y_0 = \frac{3k}{1+4k^2} = \frac{3}{\frac{1}{k}+4k}$.

当 k < 0 时, $\frac{1}{k} + 4k \le -4$,当且仅当 $k = -\frac{1}{2}$ 时取等号,所以 $-\frac{3}{4} \le y_0 < 0$;

当 k>0 时, $\frac{1}{k}+4k\ge 4$,当且仅当 $k=\frac{1}{2}$ 时取等号,所以 $0< y_0 \le \frac{3}{4}$.

综上所述,点 Q 纵坐标的取值范围是 $\left[-\frac{3}{4}, \frac{3}{4}\right]$

法二 设 $Q(0, y_0)$,由题意,得直线 l'的斜率不为 0 ,设直线 l'的方程为 x=my+1.若 m=0 ,则 $y_0=0$. 当 $m\neq 0$ 时,设 $M(x_1, y_1)$, $N(x_2, y_2)$,

联立得方程组
$$\begin{cases} x=my+1, \\ \frac{x^2}{4}+y^2=1. \end{cases}$$
 消去 x 并整理,得 $(m^2+4)y^2+2my-3=0$,

则 $\Delta > 0$ 恒成立,且 $y_1 + y_2 = -\frac{2m}{m^2 + 4}$. 设线段 MN 的中点为 $G(x_3, y_3)$,则

$$y_3 = \frac{y_1 + y_2}{2} = -\frac{m}{m^2 + 4}$$
, $x_3 = my_3 + 1 = \frac{4}{m^2 + 4}$. 所以线段 *MN* 的垂直平分线的方程为

$$y + \frac{m}{m^2 + 4} = -m\left(x - \frac{4}{m^2 + 4}\right) . \Leftrightarrow x = 0, \notin y_0 = \frac{3m}{m^2 + 4} = \frac{3}{m + \frac{4}{m}}$$

当 m<0 时, $m+\frac{4}{m} < -4$,当且仅当 m=-2 时取等号,所以 $-\frac{3}{4} < y_0 < 0$;

适应模拟·数学参考答案 第5页(共8页)

当 m>0 时, $m+\frac{4}{m}\ge 4$,当且仅当 m=2 时取等号,所以 $0<y_0\le \frac{3}{4}$.

综上所述,点Q纵坐标的取值范围是 $\left[-\frac{3}{4},\frac{3}{4}\right]$

法三 设 $Q(0, y_0)$, 当直线 l'的斜率不存在时, $y_0=0$.

当直线 l'的斜率存在时,设直线 l'的斜率为 k, $M(x_1, y_1)$, $N(x_2, y_2)$,线段 MN 的中点为 $G(x_3, y_3)$.由

$$\begin{cases} \frac{x_1^2}{4} + y_1^2 = 1, \\ \frac{x_2^2}{4} + y_2^2 = 1, \end{cases} \stackrel{(x_1 + x_2)}{=} \frac{(x_1 + x_2)}{4} + (y_1 + y_2)(y_1 - y_2) = 0.$$

所以
$$k = \frac{y_1 - y_2}{x_1 - x_2} = -\frac{x_1 + x_2}{4(y_1 + y_2)} = -\frac{2x_3}{4 \cdot 2y_3} = -\frac{x_3}{4y_3}$$

线段 MN 的垂直平分线的方程为 $y-y_3 = \frac{4y_3}{x_3}(x-x_3)$

$$\Leftrightarrow x=0$$
, $\notin y_0=-3y_3$. $\pm k=-\frac{x_3}{4y_3}=\frac{y_3}{x_3-1}$, $\notin y_3^2=-\frac{1}{4}x_3^2+\frac{1}{4}x_3=-\frac{1}{4}\left(x_3-\frac{1}{2}\right)^2+\frac{1}{16}$,

由 $y_3^2 > 0$ 得 $0 < x_3 < 1$,所以 $0 < y_3^2 \le \frac{1}{16}$,则 $-\frac{1}{4} \le y_3 < 0$ 或 $0 < y_3 \le \frac{1}{4}$,所以 $-\frac{3}{4} \le y_0 < 0$ 或 $0 < y_0 \le \frac{3}{4}$.

综上所述,点Q纵坐标的取值范围是 $\left[-\frac{3}{4}, \frac{3}{4}\right]$

21. 【解析】

(I)
$$f'(x) = 2xe^{x} + x^{2}e^{x} = xe^{x}(x+2)$$
, 令 $f'(x) > 0$,解得: $x > 0$ 或 $x < -2$,令 $f'(x) < 0$,解得: $-2 < x < 0$,故 $f(x)$ 在 $(-\infty, -2)$ 递增,在 $(-2, 0)$ 递减,在 $(0, +\infty)$ 递增,故 $x = -2$ 时, $f(x)$ 取极大值, $f(x)$ 的极大值是 $f(-2) = \frac{4-e^{2}}{e^{2}} < 0$,而 $f(0) = -1 < 0$, $f(1) = e - 1 > 0$,故 $f(x)$ 只有 1 个零点:

- (II) 由 $2lnx+x=lnx^2+lne^x=ln(x^2e^x)$,故原不等式等价于 $x^2e^x-1 \ge aln(x^2e^x)$,令 $t=x^2e^x$,则 $t-1 \ge alnt$,由(1)知: x>0时,f(x)>f(0),即 $x^2e^x-1>-1$,故 $x^2e^x>0$,即 $t\in (0,+\infty)$,∴ $t-1 \ge alnt$.即 $t-alnt-1 \ge 0$ 在 $t\in (0,+\infty)$ 时恒成立,令 g(t)=t-alnt-1,则 $g'(t)=1-\frac{a}{t}=\frac{t-a}{t}$,且 g(1)=1-aln1-1=0,
- ①若 $a \le 0$,则 g'(t) > 0 在 $t \in (0, +\infty)$ 时恒成立,g(t) 在 $(0, +\infty)$ 单调递增, $t \in (0, 1)$ 时,g(t) < g(1) = 0,不满足 $g(t) \ge 0$ 恒成立,

适应模拟•数学参考答案 第6页(共8页)

②若 a > 0, 令 g'(t) = 0, 解得: t = a,

∴t∈ (0, a) 时, g'(t) <0, g(t) 递减, t∈ (a, +∞) 时, g'(t) >0, g(t) 递增,

(i) 若 0<a<1,则g(t) 在(a, 1)上单调递增,

 $t \in (a, 1)$ 时, g(t) < g(1) = 0, 不满足 $g(t) \ge 0$ 恒成立,

- (iii) 若 a>0, 则 g(t) 在 (1, a) 上单调递减,

 $t \in (1, a)$ 时, g(t) < g(1) = 0, 不满足g(t) ≥ 0 恒成立,

综上: a=1 时,符合题意,故 a 的取值范围是 $\{1\}$.

(注:其它方法酌情给分)

22. 【解析】

- (I) 由于 $S_n = \frac{(a_n + 1)^2}{4}$, $n \in \mathbb{N}^*$,故 $S_1 = \frac{(a_1 + 1)^2}{4} \Rightarrow a_1 = 1$; $n \ge 2$ 时 $4S_n = (a_n + 1)^2$, $4S_{n-1} = (a_{n-1} + 1)^2$; 作差得, $4a_n = (a_n + 1)^2 (a_{n-1} + 1)^2 \Leftrightarrow (a_n + a_{n-1})(a_n a_{n-1} 2) = 0$. 由于 $\{a_n\}$ 是正项数列,故 $a_n a_{n-1} = 2$, $\{a_n\}$ 是等差数列, $a_n = 2n 1$, $S_n = n^2$.
- (II) 由于 $b_n S_n = b_n n^2$, $b_{n+1} S_{n+1} = b_{n+1} (n+1)^2$, $b_n + b_{n+1} = 2n^2 + 2n + 1 = n^2 + (n+1)^2$ 故 $b_{n+1} S_{n+1} = -(b_n S_n)$.由于 $b_1 S_1 = b_1 1$,所以
 - (1) 当 $b_1 \neq 1$ 时, $\frac{b_{n+1} S_{n+1}}{b_n S_n} = -1$,数列 $\{b_n S_n\}$ 构成等比数列;
 - (2) 当 $b_1 = 1$ 时,数列 $\{b_n S_n\}$ 不构成等比数列.
- (III) 若 $b_1 = 1$, 由(II)知 $b_k = k^2$. 于是,所求不等式即 $\left| \sum_{k=1}^n (-1)^k \frac{k^2 + 1}{k^4 + k^2 + 1} \right| \le \frac{55}{111} \le \sum_{k=1}^n \frac{k}{k^4 + k^2 + 1}$.

设
$$f(k) = \frac{1}{k^2 - k + 1}$$
,则 $f(k+1) = \frac{1}{k^2 + k + 1}$.
故 $\sum_{k=1}^{n} \frac{k}{k^4 + k^2 + 1} = \frac{1}{2} \sum_{k=1}^{n} \frac{2k}{(k^2 + 1)^2 - k^2} = \frac{1}{2} \sum_{k=1}^{n} \frac{(k^2 + k + 1) - (k^2 - k + 1)}{(k^2 + k + 1)(k^2 - k + 1)} = \frac{1}{2} \sum_{k=1}^{n} (f(k) - f(k+1)) = \frac{1}{2} (f(1) - f(n+1))$.
同理,有

$$\left| \sum_{k=1}^{n} (-1)^k \frac{k^2 + 1}{k^4 + k^2 + 1} \right| = \frac{1}{2} \left| \sum_{k=1}^{n} (-1)^k \frac{(k^2 + k + 1) + (k^2 - k + 1)}{(k^2 + k + 1)(k^2 - k + 1)} \right|$$

$$= \frac{1}{2} \left| \sum_{k=1}^{n} (-1)^{k} \left(f(k) + f(k+1) \right) \right| = \begin{cases} \frac{1}{2} (f(1) + f(n+1)), n = 2m - 1, m \in \mathbb{N}^{*} \\ \frac{1}{2} (f(1) - f(n+1)), n = 2m, m \in \mathbb{N}^{*} \end{cases}$$

由于
$$\frac{1}{2}(f(1)+f(n+1))>\frac{1}{2}f(1)=\frac{1}{2}>\frac{55}{111}$$
, 故而只能有 $n=2m,m\in N*$.

于是,

适应模拟•数学参考答案 第7页(共8页)

$$\left| \sum_{k=1}^{n} (-1)^{k} \frac{k^{2} + 1}{k^{4} + k^{2} + 1} \right| \leq \frac{55}{111} \leq \sum_{k=1}^{n} \frac{k}{k^{4} + k^{2} + 1}$$

$$\Leftrightarrow \frac{1}{2} (f(1) - f(n+1)) \leq \frac{55}{111} \leq \frac{1}{2} (f(1) - f(n+1)), (n = 2m, m \in N^{*})$$

$$\Leftrightarrow \frac{1}{2} (f(1) - f(n+1)) = \frac{55}{111}, (n = 2m, m \in N^{*})$$

$$\Leftrightarrow n^{2} + n + 1 = 111, (n = 2m, m \in N^{*}) \Leftrightarrow n = 10.$$

适应模拟•数学参考答案 第8页(共8页)

综上所述,所有符合条件的正整数n只有n=10.